Poster ISOQOL

Investigating heterogeneity for survival in a pooled cancer cohort of more than 10,000 patients from 30 EORTC Randomized Trials

Quinten C1, Martinelli F1, Coens C1, Maringwa J1, Cleeland C2, Flechtner H3, Gotay C4, Greimel E5, King M6, Osoba D7, Taphoorn MJB8, Reeve B9, Ringash J10, Schmucker-Von Koch J11, Weis J12, Bottomley A1

1EORTC, Brussels, Belgium, 2U.T.M.D. Anderson Cancer Center, Houston, TX, USA, 3City Hospital Magdeburg, Magdeburg, Germany, 4University of British Columbia, Vancouver, BC, Canada, 5Medical University Graz, Graz, Austria, 6University of Sydney, Sydney, Australia, 7QOL Consulting, West Vancouver, BC, Canada, 8VU University Medical Center/Medical Center Haaglanden, Den Haag, Netherlands, 9National Cancer Institute, Bethesda, MD, USA, 10The Princess Margaret Hospital, Toronto, ON, Canada, 11University of Regensburg, Regensburg, Germany, 12University of Freiburg, Freiburg, Germany

Background
Patient-centered outcome research investigates heterogeneity in survival based on patients’ socio-demographic, clinical and health related quality of life (HRQOL) factors. Various modeling techniques trying to capture the underlying heterogeneity ultimately result in different hazard ratios, confidence intervals and their significance. Our analysis compares a stratified Cox model in a cancer population cohort with a more complex frailty model.

Methods
A pooled dataset of 30 EORTC Randomized Controlled Trials in 11 cancer types included patient-reported baseline measures of HRQOL using the EORTC QLQ-C30. Age (≤60 vs. >60), gender, distant metastasis (no vs. yes), World Health Organization (WHO) performance status (0-1 vs. 2-3) were included as common factors across all cancer sites. The prognostic significance (p<.05) of the clinical variables and 15 QLQ-C30 scales for survival were investigated using a Cox proportional hazard model with cancer site as a stratification factor and a frailty model where cancer site was defined as a random effect.

Results
In the final stratified model, physical functioning (hazard ratio [HR] 0.94; 95% Confidence Interval (CI); 0.92-0.96; p<0.001), pain (1.04; 1.02-1.06; <.0001) and appetite loss (1.05; 1.03-1.06; <.0001) added significant prognostic information alongside the parameters age (1.17; 1.06 -1.28; 0.0001), gender (0.74; 0.67-0.82; <0.0001) and distant metastasis (1.70; 1.49-1.93; <.0001). The final frailty model, including both clinical and HRQOL data; physical functioning (0.94; 0.93-0.95; <.0001), pain (1.04; 1.03-1.05; <.0001) and appetite loss (1.05; 1.05-1.05; <.0001) provided significant prognostic information alongside the parameters age (1.15; 1.10-1.20; <.0001), gender (0.73; 0.70-0.76; 0.0005) and distant metastasis (1.72; 1.62-1.82; <.0001).

Conclusion
Our results show that both models retain the same parameters as significant, but the frailty model reports smaller confidence intervals. A frailty model may benefit analysis of clinical trials with correlated data and provides a rationale for future protocol as it increases the robustness of our findings.